
Event-driven Programming with Amazon DynamoDB Streams 
and Amazon Lambda 
                                                                                                               Last Updated: 09/25/2015  

 

Part I | Workshop Summary 
Overview 

In this session we will introduce you to the basics of event-driven programming using Amazon 
DynamoDB, its newly launched Streams feature and AWS Lambda. We will provide an overview of 
both AWS products and walk you through the process of building a real-world application using AWS 
Triggers, which combines DynamoDB Streams and Lambda. 
 
Target Training Audiences 

Software developers, architects, technical decision makers. 
 
Technical/Knowledge Prerequisites 

• Existing AWS account available for use during the workshop on your own laptop 
• Basic knowledge of NoSQL databases and distributed systems 
• Recommended experience with Amazon DynamoDB 

 

Bootcamp Learning Objectives  

As a result of this training, attendees will be able to: 

Describe DynamoDB and how it fits into an application architecture 

Design basic key schema for DynamoDB tables 

Implement event-driven applications using DynamoDB Streams and AWS Lambda 

Identify and troubleshoot issues in AWS Lambda functions 

 

 
© 2015 Amazon Web Services LLC and its affiliates. All rights reserved. 410 Terry Avenue North, Seattle, WA 98109-5210 
Amazon Web Services LLC Confidential. The information in this document may not be disclosed without prior 
written consent from Amazon Web Services LLC.                
 



Event-driven Programming with Amazon DynamoDB Streams 
and Amazon Lambda 
                                                                                                               Last Updated: 09/25/2015  

 

Part II | Background 
Sample Use Case: Storing Raw Data 

Imagine a mobile gaming application storing users’ scores in a DynamoDB table. The raw scores of 
users are stored directly in a table name “GameScoreRecords” with sample entries as such: 

 

RecordID Username Score Nickname 

1 Jane Doe 100 JaneD 

2 Bob Builder 150  

3 Jane Doe 250 JaneD 

 

Consider and discuss the following with your group: 

• In the above example, is “RecordID” is an acceptable choice for the primary key of the 
DynamoDB table in terms of even distribution? Why or why not?  

• Assuming “RecordID” is the primary key for the table, in the above example there are two 
record entries with “Username” equal to “Jane Doe”. Is this acceptable in DynamoDB? 

• There is a record with no value for “Nickname”, is this possible in DynamoDB? 

 

While discussing the above questions, you may find it helpful to consult the public documentation for 
the DynamoDB Data Model. 

 

Sample Use Case: Aggregating Data 

Now that the application can store raw scores of users in a DynamoDB table, it may want to display 
the total score of each user in their profile. For instance, for user “Jane Doe” the total score for the 
application is the sum of two individual score records “100” and “250”, yielding a result of “350” as a 
total score. 

 

Consider and discuss the following with your group: 

• Given the sample DynamoDB table above, how would one use DynamoDB operations to 
determine the total score for user “Jane Doe”? 

 
© 2015 Amazon Web Services LLC and its affiliates. All rights reserved. 410 Terry Avenue North, Seattle, WA 98109-5210 
Amazon Web Services LLC Confidential. The information in this document may not be disclosed without prior 
written consent from Amazon Web Services LLC.                
 

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DataModel.html


You may find the following documentation on DynamoDB Operations to be useful during your group 
discussion. 

 

As you may have discovered through your group discussion, to obtain the aggregate score of a user 
requires scanning the entire DynamoDB table every time, because there is no way of knowing which 
records are related to a given user. After scanning the table, we can add up all the scores of a 
particular user to get the aggregate score for that user. This is inefficient and not scalable as the table 
grows in size. Imagine having to spend time scanning the table every time a query comes in! 

 

Instead, what we want is to keep a running total of each user’s aggregate score as the raw scores 
table is updated. We can keep track of these aggregate scores in a separate table, for example, 
continuing the example from above, the aggregate score table “GameScoresByUser” will look like the 
following: 

 

Username Score 

Jane Doe 350 

Bob Builder 150 

 

Now we have come up with a use case where we can use DynamoDB Streams and AWS Lambda to 
enable a simple, event-driven programming scenario: 

 

 
In the following exercises, we will create the above DynamoDB tables and build an event-driven 
application that keeps track of aggregate user game scores in real-time. 

Amazon DynamoDB table 
and Streams AWS Lambda Update another table 

 
 
© 2015 Amazon Web Services LLC and its affiliates. All rights reserved. 410 Terry Avenue North, Seattle, WA 98109-5210 
Amazon Web Services LLC Confidential. The information in this document may not be disclosed without prior 
written consent from Amazon Web Services LLC.                

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/APISummary.html


Event-driven Programming with Amazon DynamoDB Streams 
and Amazon Lambda 
                                                                                                               Last Updated: 09/25/2015  

 

Part III | Creating DynamoDB Tables 
 

1. In this procedure, you will create a new table named GameScoreRecords.  
2. Go to the AWS DynamoDB Console (https://us-west-

2.console.aws.amazon.com/dynamodb/home?region=us-west-2) and login as necessary. 
3. In the AWS Management Console, click Services and then click DynamoDB. 
4. Click Create Table. 
5. In the Table Name box, type GameScoreRecords.  
6. For Primary Key Type, select Hash. 
7. For the Hash Attribute Type, select Number. 
8. In the Hash Attribute Name box, type RecordID.  
9. Click Continue. 
10. On the Add Indexes page, click Continue.  

a. Note: You will not be using an index for this exercise. 
11. On the Provisioned Throughput Capacity page, click Continue. 

a. Note: You will accept the default read and write capacity for this exercise. 
b. Read Capacity Unit: A unit of read capacity represents one strongly consistent read per 

second for items as large as 4KB. 
c. Write Capacity Unit: A unit of write capacity represents one write per second for items 

as large as 1KB. 
12. On the Throughput Alarms page: 

a. Accept the default setting of not enabling Streams. 
b. Accept the default setting of 80%. 
c. In the Send notification to box, type your email address. 

13. Click Continue.  
14. Click Create. 
15. It takes several seconds for Amazon Dynamo DB to create the table. When the table is ready 

to use, it appears in the list of tables with a status of Active. If the status does not change, 
refresh the page.   

16. Once the table is in “ACTIVE” status, you can explore the table by either double clicking the 
table, or clicking on “Explore Table” after selecting it. 

17. Experiment with a few DynamoDB operations while exploring the table: 
• Inserting a new item: click on “Create Item”, and enter “1” as the value for RecordID. To 

insert additional attributes, click on the action menu in front of the text “RecordID”, please 
see illustration for its location: 

 
© 2015 Amazon Web Services LLC and its affiliates. All rights reserved. 410 Terry Avenue North, Seattle, WA 98109-5210 
Amazon Web Services LLC Confidential. The information in this document may not be disclosed without prior 
written consent from Amazon Web Services LLC.                
 

https://us-west-2.console.aws.amazon.com/dynamodb/home?region=us-west-2
https://us-west-2.console.aws.amazon.com/dynamodb/home?region=us-west-2


 
• Select “Insert” > “String”.  Enter “Username” as the field name, and “Jane Doe” as the 

value. Repeat the actions to add additional attributes “Number” type field “Score” with 
value “100” and “String” type field “Nickname” with value “JaneD”. Once finished with the 
item, click on “Save” to see the PutItem successfully message, click on “OK” to dismiss the 
dialog and click on “Browse Items” tab to exit the Put Item view. 

• Getting an existing item: in the “Browse Items” tab, select the “Get” option and leave 
everything else as the default, only enter “1” in the Hash Key field such that we are getting 
the record with RecordID equal to 1. Click on “Query” or “Go” to view the item we just 
inserted. Try the same query with RecordID equal to 2, the result set should be empty 
since we did not insert an item with RecordID value 2. 

• Scanning the table: in the “Browse Items” tab, select the “Scan” option, then click on “Go” 
to initiate the scan. You should only see 1 item in the result because we only inserted 1 
item. If we insert more items, all of them will show up when a scan is initiated. Note 
scanning the table could be potentially expensive because we consume read capacity units 
for all items that are returned in a scan.   

18. Now that we have created the table to store raw game score records. Repeat steps 1 through 
10 to create a second table to keep track of aggregate scores by user. Use the following 
parameters: 
• Table Name: GameScoresByUser 
• Primary Key Type: Hash 
• Hash Attribute Type: String 
• Hash Attribute Name: Username 
• No secondary indexes 
• Provisioned Throughput Capacity: 1 for both Read and Write 
• Default additional options 

19. There is no need to add any items to the “GameScoresByUser” table, instead we can setup the 
lambda function such that it is automatically updated as items are inserted into 
“GameScoreRecords”. Let’s move onto the next section. 

 
 
© 2015 Amazon Web Services LLC and its affiliates. All rights reserved. 410 Terry Avenue North, Seattle, WA 98109-5210 
Amazon Web Services LLC Confidential. The information in this document may not be disclosed without prior 
written consent from Amazon Web Services LLC.                



Event-driven Programming with Amazon DynamoDB Streams 
and Amazon Lambda 
                                                                                                               Last Updated: 09/25/2015  

 

Part IV | Enabling DynamoDB Streams 
 

Now that we have created both DynamoDB tables, we can start building the event-driven 
programming logic that will enable score aggregation in real-time. As a start, we need to enable 
DynamoDB Streams on the table with raw game score records “GameScoreRecords”.  

1. In the AWS DynamoDB console, single click the table “GameScoreRecords”, make sure its 
status is “ACTIVE”. 

2. In the details pane that pops up on the bottom of the console, click on the “Streams” tab. 
3. Since we chose not to enable Streams during table creation, there should be no streams 

displayed. Instead, the option “Enable New Stream” should be available.  
4. Click on “Enable New Stream”, for View Type, select “New Image – the entire item, as it 

appears after it was modified”. Since our application is to keep track of an aggregate total 
score, we only care about the “New Image” which gives us the new raw scores being added to 
the table. 

5. Click on “Enable New Stream” in the pop up window to confirm Stream creation. 
6. A new stream should appear in the “Streams” tab, with status “Enabling”, wait a few minutes 

and use the refresh button in the top right corner to monitor the status. 
7. After a few minutes, the Stream status should transition to “Enabled”, we now have a Stream 

recording updates to our “GameScoreRecords” table! 

Now that Streams is enabled on the “GameScoreRecords” table, all inserts will be recorded in the 
stream. As more records are added to the table, we can attach a Lambda function to the stream and 
process each record by adding the score to the user’s running aggregate total. Here is a quick 
illustrative example: 

 

AWS Lambda 

Update item: 
{ Username : Jane Doe 
  Score : 150 250 } 

Insert new record: 
{ RecordID : 2 
  Username : Jane Doe 
  Score : 100 
  Nickname : JaneD } 

Lambda function: 
Add 100 to Score of item 
with Username “Jane Doe” 

GameScoreRecords with 
Streams Enabled GameScoresByUser 

 
© 2015 Amazon Web Services LLC and its affiliates. All rights reserved. 410 Terry Avenue North, Seattle, WA 98109-5210 
Amazon Web Services LLC Confidential. The information in this document may not be disclosed without prior 
written consent from Amazon Web Services LLC.                
 



Event-driven Programming with Amazon DynamoDB Streams 
and Amazon Lambda 
                                                                                                               Last Updated: 09/25/2015  

 

Part V | Creating Lambda Function 

 
1. Go to the AWS Lambda console (https://us-west-

2.console.aws.amazon.com/lambda/home?region=us-west-2#/functions).  
2. Click on “Create a lambda function”, select the “dynamodb-process-stream” blueprint. 
3. Select “DynamoDB” as event source type, “GameScoreRecords” as DynamoDB table, “100” as 

batch size and “Latest” as starting position. This ensures we are processing updates to the raw 
game score records table in batches of 100, starting with the most recent record.  

4. Click on “Next” to configure the lambda function, name the function 
“AggregateScoresByUser”. Use an appropriate description to remember what this function 
does and select “Node.js” as runtime. Using node.js allows us to edit and test the lambda 
function inside the AWS console. 

5. Leave the default lambda function code, we will work on the actual code later. 
6. For lambda function handler, leave the default “index.handler” as is.  
7. For lambda function role, select “DynamoDB event stream role” under the “Create new role” 

header. This opens a separate window or tab under the IAM (Identity Access Management) 
service. 

8. Creating a new IAM role gives the lambda function the permissions it needs in order to 
perform AWS actions. Select “Create a new IAM Role” for IAM Role, and enter 
“lambda_dynamodb_streams_demo” as the Role Name. Click on “View Policy Document” to 
look at the default permissions given to the lambda function. Click on “Edit” to enable 
modification to the policy document. 

9. The default policy allows the lambda function to get records from DynamoDB Streams and 
publish to CloudWatch logs for monitoring. In this exercise, we also need the lambda function 
to perform updates to our “GameScoresByUser” table, so we need to add an additional 
permission. Please copy the full policy document from Appendix A to replace the existing 
policy document.  

10. Click on “Allow” to create the IAM role with our newly edited policy document. This should 
bring you back to the lambda console with “lambda_dynamodb_streams_demo” as the 
lambda role selection. 

11. Leave the defaults for Advanced Settings, click on “Next” to continue creating the lambda 
function. 

12. Review all the parameters we just entered, ensure the correct function name, runtime, 
handler and event source are selected. For the enable event source option, leave the default 

 
© 2015 Amazon Web Services LLC and its affiliates. All rights reserved. 410 Terry Avenue North, Seattle, WA 98109-5210 
Amazon Web Services LLC Confidential. The information in this document may not be disclosed without prior 
written consent from Amazon Web Services LLC.                
 

https://us-west-2.console.aws.amazon.com/lambda/home?region=us-west-2%23/functions
https://us-west-2.console.aws.amazon.com/lambda/home?region=us-west-2%23/functions


at “Enable later” since we want to write our lambda function and test it before enabling it on 
our table. 

13. Click on “Create function” to finish the creation process. 

 
 
© 2015 Amazon Web Services LLC and its affiliates. All rights reserved. 410 Terry Avenue North, Seattle, WA 98109-5210 
Amazon Web Services LLC Confidential. The information in this document may not be disclosed without prior 
written consent from Amazon Web Services LLC.                



Event-driven Programming with Amazon DynamoDB Streams 
and Amazon Lambda 
                                                                                                               Last Updated: 09/25/2015  

 
 

Part VI | Writing and Testing Lambda Function 
 

1. After the lambda function has been created, a new detailed lambda function view is 
displayed. Click on the “Code” tab to view the current lambda code. 

2. The default skeleton lambda function code simply takes each record and logs it. As a basic 
test, we can try out this function on a sample event or record.  

3. Click on “Actions” near the top, then “Configure sample event”. This allows us to create a 
sample Streams event or record, as if the record had been inserted into a DynamoDB table. 
This way, we can fully test out our lambda function before enabling it on the actual 
DynamoDB table. 

4. In the pop-up window with input sample event, select event template “DynamoDB Update” to 
see the base template for a DynamoDB update stream record. The default base template 
contains 3 DynamoDB Streams records, with some dummy values for attributes. We can 
replace these to look like records from the actual “GameScoreRecords” table. Please delete all 
the sample records and replace them with the one provided in Appendix B. 

5. Click on “Submit” after pasting in our own sample event. Then, click on the “Test” button near 
the top to run the lambda code with the newly edited sample event. Scroll to the bottom to 
see the test run results, it should look similar to the screen capture below: 

 
 

6. Now we can work on the actual lambda function code. Delete all the existing sample code and 
replace it with the skeleton code given in Appendix C, which provides a start and outlines the 
main functionality we need to implement in the lambda function. Complete implementation 
in the lambda function by uncommenting code where a “TODO” is marked in the code, 
including: 
• Configuring the AWS client with the correct region name 

 
© 2015 Amazon Web Services LLC and its affiliates. All rights reserved. 410 Terry Avenue North, Seattle, WA 98109-5210 
Amazon Web Services LLC Confidential. The information in this document may not be disclosed without prior 
written consent from Amazon Web Services LLC.                
 



• Retrieving the new image for each Streams record and extracting the values of the 
Username and Score attribute 

• Generating an UpdateItem request to the “GameScoresByUser” table to add the score to 
the running total of the appropriate user 

7. You can test your code as you are working on it. When the lambda execution result shows 
“succeeded”, you may double check the update item operation actually executed by going to 
the AWS DynamoDB console and check the content of the “GameScoresByUser” table. If the 
lambda function is working properly, you should see an entry for “Jane Doe” as follows: 

 
 

Of course, as you execute the test code multiple times by clicking on “Test” repeatedly, the 
Score value for “Jane Doe” should increase by increments of 100. Clicking on “Test” twice 
more should yield an aggregate score of 300: 
 

 
8. Once you have made sure the lambda function works properly on the sample event. You can 

go ahead and enable the actual event source on the raw game score records table 
“GameScoreRecords”. 

9. Go back to the AWS lambda console, select the “AggregateScoresByUser” function, click on 
the “Event sources” tab and click on state of the event source DDB:GameScoreRecords 
(should say “Disabled”). 

10. Click on “Enable” on the pop-up dialog to enable the event source, a success message should 
show up notifying you that the lambda function is receiving events from 
DDB:GameScoreRecords. 

11. Congratulations, you now have a fully enabled event-driven pipeline from the 
GameScoreRecords table to the GameScoresByUser table! Test it out by inserting a few 
sample items in the GameScoreRecords table, remember to include values for the Username 
and Score attribute. 

 
 
© 2015 Amazon Web Services LLC and its affiliates. All rights reserved. 410 Terry Avenue North, Seattle, WA 98109-5210 
Amazon Web Services LLC Confidential. The information in this document may not be disclosed without prior 
written consent from Amazon Web Services LLC.                



Event-driven Programming with Amazon DynamoDB Streams 
and Amazon Lambda 
                                                                                                               Last Updated: 09/25/2015  

 
 

Part VII | (Optional) Adding Basic Error Handling 
 

As you may have noticed, the current implementation of the lambda function does not perform any 
error or exception handling. For instance, what happens if the incoming Streams record does not 
contain an attribute named “Username”? It is entirely possible for someone to accidentally insert an 
item without this attribute, unless the mobile gaming application explicitly performs this check. 
Regardless, it is typically best practice to perform some basic sanity checks. 
 
As an optional exercise, try adding some basic checks to the lambda function to prevent errors when 
records with unexpected formats appear: 

• NewImage is undefined or null (this can happen when the stream record is a “DELETE” event 
instead of “INSERT” or “MODIFY”) 

• The “Username” attribute is undefined or null  
• The “Score” attribute is undefined or null 

 
Try adding checks for the above conditions in your lambda function, and skip records that meet any 
of these conditions because they are considered “invalid” for our use case. If you get stuck and need 
hints, please refer to the complete solution in the “Solutions” directory of the workshop package.

 
© 2015 Amazon Web Services LLC and its affiliates. All rights reserved. 410 Terry Avenue North, Seattle, WA 98109-5210 
Amazon Web Services LLC Confidential. The information in this document may not be disclosed without prior 
written consent from Amazon Web Services LLC.                
 



Event-driven Programming with Amazon DynamoDB Streams 
and Amazon Lambda 
                                                                                                               Last Updated: 09/25/2015  

 
 

Part VIII | (Optional) Receiving Email Notifications for Top Scores 
 

As the developer of the mobile gaming application, you may be interested in maintaining a 
leaderboard of top scores. As a start, we can try to implement a lambda function that simply sends an 
email notification whenever a high score is registered in the “GameScoresByUser” table. To do this, 
we will need to first set up an Amazon Simple Notification Service (SNS) topic: 
 

1. Go to the AWS SNS Console (https://us-west-
2.console.aws.amazon.com/sns/home?region=us-west-2) 

2. Click on “Create Topic” under Common actions. 
3. Enter “TopScores” for both Topic name and Display name. 
4. Click on “Create Topic”. 
5. On the Topic Details page, click on “Create Subscription”. 
6. Choose “Email” as the Protocol. 
7. Type your own email in the field “Endpoint”. 
8. Click on “Create Subscription”. 
9. You should receive an email requesting confirmation of your subscription to this SNS topic, 

make sure to click on the “Confirm subscription” link in the email. 
10. Double check your subscription is confirmed by refreshing the SNS topic page until the 

Subscription ID is no longer “PendingConfirmation”, but instead a populated ID. 

Now that you have created an SNS topic and subscribed your email address to it, it’s time to utilize 
your knowledge of lambda functions and create a lambda function that is triggered by the 
“GameScoresByUser” table. Remember you need to achieve the following: 

• Create a new IAM role that grants permission “SNS:publish” to the specific SNS topic you just 
created using the Topic ARN. 

• Configure the lambda function to check if the user score exceeded a given threshold 
• If the threshold is exceeded, publish an SNS message to the topic you created 

For reference, please see Appendix D for the IAM role policy and Appendix E for the skeleton lambda 
function code. 
 
After you have finished the lambda function, you can test it out by going back to the raw records 
“GameScoreRecords” table and inserting a few entries. The aggregate score should be updated in 
“GameScoresByUser”, and you should receive an email notification when the total aggregate score of 
a user exceeds the top score threshold you’ve configured in your lambda function. 

 
© 2015 Amazon Web Services LLC and its affiliates. All rights reserved. 410 Terry Avenue North, Seattle, WA 98109-5210 
Amazon Web Services LLC Confidential. The information in this document may not be disclosed without prior 
written consent from Amazon Web Services LLC.                
 

https://us-west-2.console.aws.amazon.com/sns/home?region=us-west-2
https://us-west-2.console.aws.amazon.com/sns/home?region=us-west-2


Event-driven Programming with Amazon DynamoDB Streams 
and Amazon Lambda 
                                                                                                               Last Updated: 09/25/2015  

 

Appendix A | IAM Policy Document for Lambda Function 
 
{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Effect": "Allow", 
            "Action": [ 
                "lambda:InvokeFunction" 
            ], 
            "Resource": [ 
                "*" 
            ] 
        }, 
        { 
            "Effect": "Allow", 
            "Action": [ 
                "dynamodb:GetRecords", 
                "dynamodb:GetShardIterator", 
                "dynamodb:DescribeStream", 
                "dynamodb:ListStreams", 
                "logs:CreateLogGroup", 
                "logs:CreateLogStream", 
                "logs:PutLogEvents" 
            ], 
            "Resource": "*" 
        }, 
 { 
     "Effect": "Allow", 
     "Action": [ 
         "dynamodb:UpdateItem" 
     ], 
     "Resource": "arn:aws:dynamodb:us-west-2:*:table/GameScoresByUser" 
 } 
    ] 
} 
 

Back

 
© 2015 Amazon Web Services LLC and its affiliates. All rights reserved. 410 Terry Avenue North, Seattle, WA 98109-5210 
Amazon Web Services LLC Confidential. The information in this document may not be disclosed without prior 
written consent from Amazon Web Services LLC.                
 



Event-driven Programming with Amazon DynamoDB Streams 
and Amazon Lambda 
                                                                                                               Last Updated: 09/25/2015  

 

Appendix B | Sample Event for Lambda Function Testing 
 
{ 
  "Records": [ 
    { 
      "eventID": "1", 
      "eventVersion": "1.0", 
      "dynamodb": { 
        "Keys": { 
          "RecordID": { 
            "S": "2" 
          } 
        }, 
        "NewImage": { 
          "RecordID": { 
            "S": "2" 
          }, 
          "Username": { 
            "S": "Jane Doe" 
          }, 
          "Score": { 
            "N": "100" 
          }, 
          "Nickname": { 
            "S": "JaneD" 
          } 
        }, 
        "StreamViewType": "NEW_IMAGE", 
        "SequenceNumber": "111", 
        "SizeBytes": 26 
      }, 
      "awsRegion": "us-west-2", 
      "eventName": "INSERT", 
      "eventSourceARN": "arn:aws:dynamodb:us-west-2:account-
id:table/GameScoreRecords/stream/2015-10-07T00:48:05.899", 
      "eventSource": "aws:dynamodb" 
    } 
  ] 
} 
 

Back 

 
© 2015 Amazon Web Services LLC and its affiliates. All rights reserved. 410 Terry Avenue North, Seattle, WA 98109-5210 
Amazon Web Services LLC Confidential. The information in this document may not be disclosed without prior 
written consent from Amazon Web Services LLC.                
 



Event-driven Programming with Amazon DynamoDB Streams 
and Amazon Lambda 
                                                                                                               Last Updated: 09/25/2015  

 

Appendix C | Lambda Function Skeleton Code 
 

// Set up AWS client 
var AWS = require('aws-sdk'); 
var dynamodb = new AWS.DynamoDB(); 
 
// TODO update AWS configuration to set region 
// AWS.config.update({region : 'us-west-2'}); 
 
exports.handler = function(event, context) { 
    // Keep track of how many requests are in flight 
    var inflightRequests = 0; 
     
    event.Records.forEach(function(record) { 
        console.log('DynamoDB Record: %j', record.dynamodb); 
         
        // Get the new image of the DynamoDB Streams record 
        var newItemImage = record.dynamodb.NewImage; 
         
        // Set the appropriate parameters for UpdateItem 
        // Refer to the ADD operation in the UpdateItem API for UpdateExpression 
        // http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateItem.html 
        // Adds the specified value to the item, if attribute does not exist, set the attribute 
        var updateItemParams = { 
            TableName: "GameScoresByUser", 
            Key : { 
                Username : newItemImage.Username 
                 
            }, 
            UpdateExpression : 'ADD Score :attrValue', 
            ExpressionAttributeValues : { 
                ':attrValue' : newItemImage.Score 
            } 
        } 
         
        // Make a callback function to execute once UpdateItem request completes 
        // It may be helpful to refer to the updateItem method for the Javascript SDK 
        // http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB.html#updateItem-property 
        var updateItemCallback = function(err, data) { 
            if (err) { 
                // log errors 
                console.log(err, err.stack); 
            } else { 
                // check if all requests are finished, if so, end the function 
                inflightRequests--; 
                if (inflightRequests === 0) { 
                    context.succeed("Successfully processed " + event.Records.length + " records."); 
                } 
            } 
        }; 
         
        // TODO send UpdateItem request to DynamoDB 
        // dynamodb.updateItem(updateItemParams, updateItemCallback); 
         
        // TODO increase count for number of requests in flight 
        // inflightRequests++; 
    }); 
     
    // If there are no more requests pending, end the function 
    if (inflightRequests === 0) { 
        context.succeed("Successfully processed " + event.Records.length + " records."); 
    } 
}; 

Back

 
© 2015 Amazon Web Services LLC and its affiliates. All rights reserved. 410 Terry Avenue North, Seattle, WA 98109-5210 
Amazon Web Services LLC Confidential. The information in this document may not be disclosed without prior 
written consent from Amazon Web Services LLC.                
 



Event-driven Programming with Amazon DynamoDB Streams 
and Amazon Lambda 
                                                                                                               Last Updated: 09/25/2015  

 

Appendix D | IAM Policy for Optional Exercise 
 

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Effect": "Allow", 
            "Action": [ 
                "lambda:InvokeFunction" 
            ], 
            "Resource": [ 
                "*" 
            ] 
        }, 
        { 
            "Effect": "Allow", 
            "Action": [ 
                "dynamodb:GetRecords", 
                "dynamodb:GetShardIterator", 
                "dynamodb:DescribeStream", 
                "dynamodb:ListStreams", 
                "logs:CreateLogGroup", 
                "logs:CreateLogStream", 
                "logs:PutLogEvents" 
            ], 
            "Resource": "*" 
        }, 
 { 
     "Effect": "Allow", 
     "Action": [ 
         "SNS:publish" 
     ], 
     "Resource": "arn:aws:sns:us-west-2:*:TopScores" 
 } 
    ] 
} 
 

Back 

 
© 2015 Amazon Web Services LLC and its affiliates. All rights reserved. 410 Terry Avenue North, Seattle, WA 98109-5210 
Amazon Web Services LLC Confidential. The information in this document may not be disclosed without prior 
written consent from Amazon Web Services LLC.                
 



Event-driven Programming with Amazon DynamoDB Streams 
and Amazon Lambda 
                                                                                                               Last Updated: 09/25/2015  

 

Appendix E | Lambda Function Skeleton Code for Optional Exercise 
 
// Set up AWS client 
var AWS = require('aws-sdk'); 
var sns = new AWS.SNS(); 
 
// Update AWS configuration to set region 
AWS.config.update({region : 'us-west-2'}); 
 
// Set a high score threshold 
var TOP_SCORE = 300; 
 
exports.handler = function(event, context) { 
    var inflightRequests = 0; 
    event.Records.forEach(function(record) { 
        // Publish to SNS if the user scored above the threshold 
        if (new Number(record.dynamodb.NewImage.Score.N) > TOP_SCORE) { 
            inflightRequests++; 
            sns.publish({ 
                    // TODO insert correct ARN here 
                    TopicArn: "arn:aws:sns:us-west-2:ACCOUNT_ID:TopScores",  
                    Message: record.dynamodb.NewImage.Username.S + " scored more than " + TOP_SCORE 
                }, 
                function(err, data) { 
                    if (err) { 
                        console.log(err); 
                    } 
                    else { 
                        if ((--inflightRequests) === 0) context.succeed("Successfully processed " + 
event.Records.length + " records."); 
                    } 
                } 
            );  
        } 
    }); 
    if ((inflightRequests) === 0) context.succeed("Successfully processed " + event.Records.length + " 
records."); 
}; 
 

Back 

 
© 2015 Amazon Web Services LLC and its affiliates. All rights reserved. 410 Terry Avenue North, Seattle, WA 98109-5210 
Amazon Web Services LLC Confidential. The information in this document may not be disclosed without prior 
written consent from Amazon Web Services LLC.                
 


